LSGNT Topic in Geometry: Exercises for Mapping Class Groups

For the following exercises, let $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ be the two-dimensional torus.

- 1. Show that every homotopically essential simple closed curve on \mathbb{T}^2 is homotopic to a curve of the form $(a,b) \in \mathbb{R}^2/\mathbb{Z}^2$ such that $a,b \in \mathbb{Z}$ are coprime. Draw this curve for (a,b)=(1,3) and (a,b)=(2,3) on the standard embedding of \mathbb{T}^2 in \mathbb{R}^3 . Show the same with homotopy replaced with isotopy (more difficult).
- **2.** The purpose of this exercise is to prove that $MCG(\mathbb{T}^2)$ is isomorphic to $SL(2,\mathbb{Z})$, and to find an explicit generating set for it. Here we consider $MCG(\mathbb{T}^2)$ as the group of orientation-preserving homeomorphisms of \mathbb{T}^2 up to *homotopy*.
 - i) Show that two orientation-preserving homeomorphisms f and g of the torus are homotopic to each other if and only if they have the same induced map on $\pi_1(\mathbb{T}^2)$. (Hint: Use the fact that \mathbb{T}^2 is a $K(\pi, 1)$.)
 - ii) Use the isomorphism $\pi_1(\mathbb{T}^2) \cong H_1(\mathbb{T}^2; \mathbb{Z})$ to deduce that f and g are homotopic to each other if and only if they have the same induced map on $H_1(\mathbb{T}^2; \mathbb{Z})$.
 - iii) Note that the action of an orientation-preserving homeomorphism f of \mathbb{T}^2 preserves the intersection pairing on $H_1(\mathbb{T};\mathbb{Z})$, and so represents as element of $\operatorname{Sp}(2,\mathbb{Z}) \cong \operatorname{SL}(2,\mathbb{Z})$. Deduce that there is a well-defined homomorphism $\Phi \colon \operatorname{MCG}(\mathbb{T}^2) \to \operatorname{SL}(2,\mathbb{Z})$ that is injective.
 - iv) Show that the image of the Dehn twists about the standard curves $\alpha = (1,0)$ and $\beta = (0,1)$ are given by the matrices

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

Prove that the above matrices generate $SL(2,\mathbb{Z})$, and conclude that Φ is surjective.

- v) Conclude that Φ is an isomorphism, and that $MCG(\mathbb{T}^2)$ is generated by the Dehn twists about α and β .
- **3.** The purpose of this exercise is to prove the Nielsen–Thurston classification for $MCG(\mathbb{T}^2) \cong SL(2,\mathbb{Z})$. Let A be an element of $SL(2,\mathbb{Z})$.
 - i) Show that the characteristic polynomial of A has the form $x^2 \operatorname{tr}(A) x + 1 = 0$, where $\operatorname{tr}(A) \in \mathbb{Z}$ is the trace of the matrix A.
 - ii) Show that if $|\operatorname{tr}(A)| < 2$, then $A^{12} = id$.
 - iii) Show that if |tr(A)| = 2, then A has 1 or -1 as eigenvalue. Use this to show that there is an essential simple closed curve on \mathbb{T}^2 that is invariant under A.
 - iv) Show that if $|\operatorname{tr}(A)| > 2$, then the eigenvectors of A have irrational slopes. Deduce that A does not fix the isotopy class of any essential simple closed curve on \mathbb{T}^2 . In this case, A is called Anosov.

The proof of the Nielsen-Thurston classification for $g \geq 2$ is more complicated. In particular, there is no known embedding of the mapping class group in a linear group when $g \geq 3$.

1